
UNCLASS IFIED
SECURITY CLASSIFICATION OF THIS PAGE (When Dat& Entered)

REPOT DCUMNTATON AGEREAD INSTRUCTIONSREPOT DCUMNTATON AGEBEFORE COMPLETING FORM
I. REPORT NUMBER 2. GOVT ACCESSION NO. 3. RECIPIENT'S CATALOG NUMBER

AI Memo 718

___ 4. TITLE (and Subtitle) S. TYPE OF REPORT &PERIOD COVERED

P% Zero-crossings on Lines of Curvature memorandum

S. PERFORMING ORG. REPORT NUMBER

0 7. AUTNOR(s) 6. CONTRACT OR GRANT NUMBER(*)

LO A. Yuille NOOO 14-80-C-0 505

9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT. PROJECT. TASKC
Artificial Intelligence Laboratory AREA & WORK UNIT NUMBERS

545 Technology Square
Eu Cambridge, Massachusetts 02139 ______________

if. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT OATSE
Advanced Research Projects Agency December 1984
1400 Wilson Blvd 13. NUMMER Of PAGES
Arlington, Virginia 22209 22

14. MONITORING AGENCY NAME & ADDRESS(If different item Controlling Office) 1S. SECURITY CLASS. (of Chae report)

Offie o Naal eserchUNCLASSI FIED

Arli ngton, Virginia 22217 IS&. DECL ASSI FIC ATION/ DOWNGRADING
SCHEDULE

Distribution of this document is unlimited.

17. DISTRIBUTION STATEMENT (of the abstract entered In Block 20. It different burm Report)

III. SUPPLEMENTARY NOTES

ELECTE
None FEB 13 1985

19I. KEY WORDS (Continue on rever e* aide of necessary and identify by block nimbr

~-. t'll photometric invariants,

0 zero crossings,
lines of curvature,-

20. ABSTRACT (Continue on reverse Ido It necessary an~d identify by block rmm, bee)

LA_ We investigate the relations between the structure of the image Awa events
in the geometry of the underlying surface. We introduce some elementary

ILA differential geometry and use it to define a coordinate system on the object
based on the lines of survature. Using the coordinate system we can prove

9 results connecting the extrema, ridges and zero-crossings in the image to
geometrical features of the object. We show that extrema of the image typical
correspond to points on the surface with zero Gaussian curvature and that

DID I1JAN7M3 1473 EDITION OF I NOV 65 IS OBSOLETE UNCLASSIFIS
JA7S/N 0!02-014* 6601 PAC4 Q C1

S9Cf I~CLASSU~CTION 0(7105 PAG 4P P--re



7 .7

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

ARTIFICIAL INTELLIGENCE LABORATORY

A.I. Memo 718 December, 1984

ZERO-CROSSINGS ON LINES OF CURVATURE

( A. Yuille

Abstract. We investigate the relations between the structure of the image and events in
the geometry of the undelying surface. We introduce some elementary differential geometry
and use it to define a coordinate system on the object based on the lines of curvature.
Using this coordinate system we can prove results connecting the extrema, ridges and
zero-crossings in the image to geometrical features of the object. We show that extrema of
the image typically correspond to points on the surface with zero Gaussian curvature and
that parabolic lines often give rise to ridges, or valleys, in the image intensity. We show that
directional zero-crossings of the image along the lines of curvature generally correspond to
extrema of curvature along such lines.- d ,

- Massachusetts Institute of Technology, 1984 -

This report describes research done at the Artificial Intelligence Laboratory of the Massa-
chusetts Institute of Technology. Support for the laboratory'. artificial intelligence research
is provided in part by the Advanced Research Projects Agency of the Department of Defense
under Office of Naval Research contract N00014-80-C-0505.

,,. Q]'

1n

7-, oad-

" : ! :t ror

" '2.-.j2,

- - - - - - - - - - - - - -.. - - - -- - - - - - - - - - - - - - - - - - -- - - - - - - - - - - - - - - - - - - -

-- - -- -- - - - - - - - - - - - - - - - - - -
- - - - - -- - - - - - - - - - - - - - - - - - - - - -



7 7..-. 7- . . ...

Zero Crossings on Lines of Curvature

1. Introduction

The aim of this paper is to investigate how much information can be found from an image

when the reflectance function is unknown. More precisely we will assume that the image

E(x) is determined from the reflectance function R(p, q) and the albedo a(X, y) by the image

irradiance equation (Horn 1977)

E(x, y) = a(z, )R(p,q). (.1)

For a surface z = f(z, yi) p = al/ax and q = O/ . This equation is a good description for

the reflectance of many surfaces (Horn 1977). For many surfaces, including most of those

considered in shape from shading, the albedo is constant or varies slowly. We will assume

it is constant in this paper although many results will not change much if we allow it to

vary slowly. Equation (1.1) can be modified to hold for specular surfaces but we will not

consider such surfaces in this paper.

For the 1 -dimensional case we have

E(x)= t(p). (1.2)

Suppose we know nothing about 11(p) except that it is continuous. It is still possible to

obtain information about the surface by observing that R is a function of p only. If there is

a discontinuity in the surface gradient p (i.e. a 281 order discontinuity in the surface) there

will be a 101 order di3continuity in the image. In general an Nt" order discontinuity in the

surface corresponds to a (N - J)t" order discontinuity in the image.

We extend this type of arguement to continuous surfaces and prove results relating the

distributions of extrema and zero-crossings in the image to features of the underlying surface

geometry. To do this we will need to introduce differential geometry concepts such as lines

of curvature. We assume that the surfaces of the objects are sufficiently smooth for the

lines of curvature to be defined everywhere. We also assume the image is not smoothed by

a filter.

In recent years workers in vision have shown considerable interest in the principal lines

of curvature of surfaces. For example Curvature Patches have been proposed as a

representation for visible surfaces (Brady 1983, Brady and Yuille 1984) and there exist

various schemes for dividing objects into parts based on extrema and zeros of curvature

.......... .... • , . ,_ .....- ,_. ...... . . ... ,..,.....,. .,.. ... _..... . .-.. .. .. ,.,-......... ..- ..-.-. ,..,,
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(Brady 1983, Hoffman 1983, Hollerbach 1975). There is also some evidence from line

drawings that curves in an image are interpreted as lines of curvature (Stevens 1979) of a

perceived surface.

On the other hand it has been suggested that the principal lines of curvature of a

surface can only be computed indirectly (for example from edge detection, followed by stereo

and surface reconstruction) and with great difficulty. The complexity of the calculations also

implies bad numerical behaviour and excessive sensitivity to noise. Recent experimental

results (Terzopoulos 1984, Brady and Yuille 1984), admittedly using laser data suggest,

however, that these lines can be determined reliably.

This paper is divided into two parts. First we set up a coordinate system based on lines

of curvature and relate the image directly to the underlying geometry of the surface using

the image irradiance equation (Horn 1977). Then we prove some results concerning zero

crossings and the principal lines of curvature. These imply that in certain circumstances we

can obtain information about the principal lines of curvature, at least approximately, directly

from the image.

In the second part of the paper we consider the relation between the extrema of the

image and the parabolic lines of the surface (the lines on which the Gaussian curvature

vanishes). Using the line of curvature coordinate system we can generalize results obtained

by Koenderink and van Doom (1980). We show that almost all extrema of the image lie

on parabolic lines and that the isophotes (the lines of constant image intensity) point along

the lines of curvature when they cut the parabolic lines, independent of the details of the

reflectance function. We then argue that parabolic lines typically give rise to ridges, or

valleys, in the image intensity. For completenessin Appendix (1), we include an alternative

proof of the first of Koenderink and van Doorn's results which does not rely on the line of

curvature coordinate system. We also include an example to show that some extrema of

the image intensity do not lie on parabolic lines.

We illustrate these results with the following example. Consider the bottle shown

in figure (1). Its curvature will be zero at the head and the base. The neck is initially

convex, passes through an inflection point and then becomes concave. Thus the curvature

is positive, zero and then negative. The results state that the line with zero curvature will

correspond to a ridge, or valley, in the image intensity and that there will be two rings of

zero crossings. Furthermore, provided there is not too much foreshortening, these rings are

likely to be near the extrema of curvature.

We start by considering various directional zero crossing operators. We show that

directional zero crossings do not necessarily correspond to physical, or observable, zero

crossings. By physical zero crossings we mean those that correspond to sharp changes in

2
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the image irradiance. We suggest that directional zero crossings are physical only if their

direction is along the line of greatest change of the image irradiance and prove a result

supporting this choice of operator. This directional operator has been discussed by various

authors (Havens and Strikwerda, 1983). More recently Torre and Poggio (Torre and Poggio

1983) have considered it from an alternative point of view. Canny (Canny 1983) has argued

for this operator from the standpoint of signal processing.

In section 3 we introduce some mathematical notation and recall some results from

Differential Geometry about principal lines of curvature.

Next, in section 4, we introduce the image irradiance equation (Horn 1977). A

probabilistic argument shows that the directions of greatest change of the image irradiance

are most likely to be along the lines of principal curvature. This suggests that many of the

physical zero crossings are directional zero crossings along the principal lines of curvature

of the surface that is imaged.

In section 5 we prove some results about the distribution of zero crossings along lines

of curvature. Our starting point is the work of Grimson on surface consistency (Grimson

1981). With relatively weak assumptions about the reflectance function (Horn 1977) he was

able to produce neccessary and sufficient conditions in one dimension for the occurence of

directional zero crossings in the image irradiance in terms of the surface geometry. He then

used some probabilistic assumptions about the reflectance surface to extend this result to

two dimensions and prove his Surface Consistency Theorem. This theorem was the basis

for his theory of surface interpolation.

We present an alternative development of his analysis, and derive some significant

extensions. For example, we are able to derive, without probabilistic assumptions, necessary

and sufficient conditions for the occurence of directional zero crossings along principal lines

of curvature. We call this result the Line of Curvature Theorem. It states that there will

be a directional zero crossing along a line of curvature between points where the principal

curvature of that line vanishes. Moreover, depending on the reflectance function, this zero

crossing is likely to be near the extremum of the principal curvature.

". In conjunction with the results of section 4, the Line of Curvature Theorem suggests

that many, if not most, of the physical zero crossings can be associated with points on

the lines of principal curvature which are near the extrema of the principal curvatures (see

Figure 1). This supports the view that it may be possible to obtain an approximation to the

lines of principal curvature directly from the image. It suggests that part boundaries at the

extrema of curvature can be found at a low level of visual processing. Finally, it provides

additional support for representations of shape based on principal lines of curvature (Brady

1983) and shows that these coordinates are useful for analyzing the image intensities of

surfaces.

3

"" . - ..-.-Z
.- . = o .. . -°° - • - •4 • . = . . . . . - . . - . * - -. . .•.... - . . .- . . . .. . ..

° °

".___-",_"____'.- _-_-' -" .'*- ,'-'-C..--"-- .. .....-.-''V ''''..-....''''' "".. '.. ....-.... ,' .- ' .. ".".. ."." ." .... "."".'



YUILLE

K-O
Ridge In
Inlenltly

K-0/"

K<O

S ,,,C. contow
K>O near min. of K
i.. conto
max. of K

Figure 1. 1. Illustrations of the Line of Curvature Theorem. In (a) we show a bottle. The theorem

implies that there is a zero crossing along each of the parallels. Since the bottle is a surface of

revolution, it has two rings of zero crossings around the collar. Similarly, (b) is a singly ruled surface

for which the zero crossings lie along rulings.

The principle result of the first part Gf this paper is the Line of Curvature Theorem.

This derives results about the distribution of directional zero-crossings along the lines of

Curvature. Assuming that the zero-crossing operator is the directional derivative along the

intensity gradient we then argue that these zero-crossings are physical. If another zero-

crossing operator is chosen, the Laplacian for example, these arguments are not directly

applicable. Instead we argue that the difference in the zero-crossings of different operators

(provided they are reasonably similar) lies in the positions of the zero-crossings and not

in their existence, If results like the condition of linear variation apply (Marr and Hildreth,

1980) the change in th. positions of the zero-crossings should be small.

In section 6 we begin the second part of the paper. Using the mathematical machinery

already set up it is straightforward to extend the results obtained by Koenderink and

van Doom (1980).The most inort.ting extension is the claim that parabolic lines often

correspond to ridges in the image intensity. In Appendix 1 we provide an alternative proof

of some of Koenderink and van Doorn's results which makes no use of the curvature

coordinates. We also provide an example to show that extrema of the image do not always . -

lie on parabolic lines.

2. Physical Zero Crossings

4
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We will now show that not all directional zero crossings can correspond to physical

zero crossings. As before we use "physical" to mean those zero crossings that correspond

to sharp intensity changes in the image.

Most zero crossing detection operators involve filtering the image with a suitable

function, usually a Gaussian. In this section, and for the rest of the paper, we will not

consider the effect of the filter in any detail. The purpose of the filter is to smooth the

image, thereby isolating irradiance changes at a particular scale. Hence its only effect will

be to determine the scale at which the image is analysed and to rule out fluctuations in the

image below this scale.

We now show that there are directional zero crossings everywhere in the image. More

precisely any circle C, in the image plane with arbitrary centre and radius p will contain a

directional zero crossing. Note that we are considering continuous images, which have not

been digitized.

Let E be the image irradiance. Pick two points in C, with different values of. E. At

each point there must be a direction in which E does not vary. Join the points by a curve

in C, whose tangent vector at each endpoint is in the direction in which E does not vary.

There is always an uncountably infinite number of such curves. Now consider the derivative

of E along the curve. It is zpro at the endpoints and must be non-zero somewhere along

the curve since the endpoints have different values of E. Hence it must have an extremum

somewhere on the curve and this will be a directional zero crossing in C,. Allowing p to
tend to zero proves that the set of directional zero crossings is dense in the image plane.

From this argument it is clear that not all directional zero crossings are physically

significant. If a curve has unit tangent vector V' then a directional zero crossing is a

solution of

= 0, (2.1)

where V, denotes the derivative operator. For example in cartesian coordinates VA =;

Z:> a, ). We use the summation convention on the suffices ji,V and so LV, denotes the

scalar product of the vector J
IA with the gradient operator V, (Hawking and Ellis, 1973). We

can write (2.1) as, an alternative version is given in Appendix 2,

L I + = 0. (2.2)

If I" is a constant vector, as in Grimson's work, the second term vanishes. However

in general it is non zero though it seems plausible to require that the second term in (2.2)
in.
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Figure 2. 2. Directional zero crosaings. In (a) the unit vector points across an intensity boundary

and the zero crossing is physical. hi (b) the unit vector points in an arbitrary direction but a curve

can be choosen so that it corresponds to a directional zero crossing.

vanishes, or is small. This will ensure that the zero crossing does not depend too much on

the derivative of the tangent vector 1 (in practice this problem rarely arises since we tend to

convolve an image in a set of constant directions). To see the importance of this consider

figure (2). The physical notion of a directional zero crossing is illustrated in (2.a). The unit

vector points from a region of light to a region of dark and is approximately perpendicular

to the boundary of these regions. In figure (2.b) however the unit vector I" at x points in

an arbitrary direction in a region of almost uniform irradiance. Now there are an infinite

number of curves though x with tangent 1'. The result above tells us that it is almost always

possible to choose a curve to get a zero crossing at x (given l; at x one finds the curve by

solving (2.2) for VP"). This zero crossing arises because of the derivative of the tangent

vector and is clearly not physical.

We write this constraint as

.0. (2.3)

The most intuitive zero crossing operator is the directional derivative along the direction

of the irradiance gradient (Canny 1983, Havens and Strikwerda 1983, Torre and Poggio

1983). This corresponds to a directional derivative

dt I,/ ~ (2.1)

6 ........................................................................
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where JV ,I is the modulus of the vector VE. In other words we choose 14, to be

Hence

-= IV_ I  (2.5) ,

and

d2E aE 2E a (aEaE-'(
d = Ox dziaz azk ax1 &xt ) (2.6

A feature of this operator is that it automatically satisfies our requirement since

V, (VE))}V'E =  2Vl ,,---E ' E 0. (2.7)

2IV1.IIVj VE j

This result can be used to argue both for (V, E)V, as the directional operator and for

our requirement. It means that the zero crossings of this operator will not depend on the

derivative of the tangent vector.

Recent work by Canny (Canny 1983) supports this choice of operator. He specifies

three performance criteria and looks for the optimal edge detection operator in the presence
of background noise. He has also successfully implemented this operator on a large range

0 of images and compared its performance to that of other operators.

3. Lines of Curvature

In this section we briefly recall some of the basic concepts of differential geometry for

use in later sections. Consider a surface given by

z = f(X,y). (3.1)

We can write this as

r y(, y,/(x, )). (3.2)

We will use suffix notation, (z, Y) = (X, ,X2), and write a three dimensional vector I as

I--= (t,,l#) (3.3) ::.:

splitting it into its components in the (.,,j) plane and its component 1, in the z direction.

..-. We use the summation convention so if a suffix appears twice it will automatically be

summed. For example we use 1,,r to denote ,1,,Yn,.-

7.. .
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The unit normal to the surface is

in { Of Of -| f 1l (3.4)
n= j t a-aj LOx,

For a surface parametrized by u and v we define the first and second fundamental

matrices of the surface by

G Pr 2r @1(3.5)
or or ar or

and

n, f - -! r-  a'r1

D aud /ua, (3.6)
/ a r o'

Consider a curve u u(t) on the surface r = r(u, v). Let D and G be the second and

first fundamental matrices of the surface. Then the lines of curvature (Faux and Pratt, 1979)

are the solutions of the equation

du
(D -KG)-r =0. (3.7)

At any point there are two directions of curvature with curvatures 0,c and C2. They are

automatically mutually orthogonal, since they are the eigenvectors of the same matrices,

except at umbilic points where ic = ic.,. However at these points it is still possible to choose

them to be orthogonal. The Gau-sAan curva!ure C is the product of the two curvatures.

G= K"K2 . (3.8)

Now choose the parametrization of the surface so that u and v are parameters along the

lines of curvature. This corresponds to choosing a "curvature webbing" (Brady 1983) and

is illustrated in figure(3). The directions of curvature are Ox,/9it and Oa,/Ov with curvatures

ic, and ,,.

It is easy to see from (3.5) and (3.6) that

Or Or-,-; = 0 (3.9)

and

. . . .-.
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Figure 3. 3. A Line of Curvature webbing.

uar (3.10)

- .0."

Equations (3.9) and (3.10) demonstrate the chief mathematical advantages of a curva-

ture patch representation (Brady 1983). They show that it diagonalizes the first and second

fundamental matrices of the surface, see (3.5) and (3.6), and corresponds to the "flattest"

possible local coordinate system.

For a curvature webbing we can write down the principal curvatures directly from (3.7),

namely

0'r or ar

and

0'r dr ar
n *--KN av= . (3.12)

We write r =(xif and using

of ~' ~'(3.13)
au dxi N

n.we --- t O9.3 ad (
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f o of L + 6 . 0V -o (3.14)

Oxi ax- u O Dv

O ,1 a. - 0 (3.15)
ax,O~xi Ou an

021 +X o , Of + f ' f f +  a'Ox.. 3x 0 (3.16)

02f aX (9Lf
-Lf 6,jJ! --'= 0(3.17)

(3x1Ox, av OOv 3X, Ox,, / x, Ox3  uV OV

Note that since Or,/au and Ox1/Ov are independent for a curvature webbing, we can

use (3.14) and (3.15) to write (3.16) and (3.17) as

02 x ~ f Of Of Oxi+~ a , ! + - Y a -+ 6,jr = 0 (3.18)
Ox-'Jxj O'K Oxk dXk J )X l xi x J

af Oxi ( Of Of JOf O + 6i =o (3.19)
Oxiaj O Oxk Ox) x j Dv "-5

These are the main results we need about lines of curvature. We finish this section

with a few remarks about derivatives on surfaces and Christoffel symbols.

Suppose we have a vector field on a surface defined relative to some coordinate

system. Unless the surface is flat, the directions of the axes of the coordinate system will

. -vary over the surface. This also happens if the surface is flat and we choose a coordinate

" systnin ol her than the usual cartesian one, for example Polar Coordinates. In either case

we must take the variation of the axes into account when we differentiate. To do this we

use Christoffel symbols (Millman and Parker 1977, Hawking and Ellis 1973) denoted by 1',

* . The derivative of a vector IA in a coordinate system (xl,X2) is then

'Pip. (3.20)

* .4. The Directions of the Irradiance Gradient

" * We now argue that the most likely directions of the irradiance gradient are along the

lines of curvature.

Consider the image irradiance equation (Horn 1977). We assume orthographic projec-

tion onto the (x, V) plane and write the equation as

10
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E(xi) =R(f,) (4.1)

where fi =f Of/xi, i =1, 2. The albedo is assumed constant although the results still
hold if it varies slowly.

Avector 1i in the surface has unit length if it satisfies

Of Of + =i Ii 0 (4.2)

while a unit vector mi in the image plane obeys

rn~m,= 1.(4.3)

If we consider vectors along the directions of curvature that have unit length in the

surface vwe find from (3.15) and (3.16)

021 aX,Ox ()XfOf

OxOx, dv KU a Xk OXk) 45

Wea~ also have

f2 (4.6)
xOx, Ou dv kOx

anWe ohvne icndto

a-f1 6 , } --- 0 (.6.)

Thus Oxi/Ou and Ox,/dv have unit length in the surface and are the directions in the

surface for which the matrix with coefficients --'a is extremized (equivalently they are the
directions of curvature). Note we can think of these directions as those which extremize

1-42+ L -lfIt 01 x 01 11(A c-Lz, i 6,j 1J,li) dx (4.8)
drk PrCl di)-J X~, r
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where A can be thought of as a Lagrange multiplier used to impose orthogonality. The

standard equations for lines of curvature can be obtained from (4.8) by using the Euler

Lagrange equations.

We can write the derivatives of E in direction 1i as

": a= aR al l (4.)
Ox o f-' , Oxj a , "

The irradiance gradient will be in the direction 1i which maximizes this expression. Now

suppose that OR/Ofj is in a random direction, or that we do not know what the reflectance

function is. Then the best choice for 1i is that which extremizes

a' f
O(aL) x-- . (4.10)

where the vectors 1i have unit length in the image plane while the curvature directions

a0i/Ou and 0xi/av which extremize -i have unit length in the surface

(fr-,Ox , Ou "u

-( .. -. + 6,j } X O 1 (4.12)a!i a!i l; avj(.2 "

However if we average over the whole surface Oj-- and "f e should be equal.

Hence on average the lengths of axiau and 9x1 /Ov in the image plane will be equal and

they will be the best choices for L1 . Thus the most likely directions for the gradient of the

image irradiance is along the lines of curvature. Note that the most likely directions of VE

are not the same as its average direction.

5. The Line of Curvature Theorem

In one dimension the image irradiance equation can be written

I'(x) R(p) (5.1)

where p df /dx. Grimson (1981) obtains his theorem in one dimension by differentiating

to obtain

-;_ dftdp(5.2)
dx dp dx

12 _
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and observing that zero-crossings lie between points where dE/dx = 0 which typically

occur at places where dp/dx = 0. In two dimensions this argument fails since the right hand

side of (5.2) will now contain several terms. We shall show, however, that it is possible to

extend this proof to two dimensions by a special choice of coordinates.

Observe that in the flat two dimensional image space (x,) and (fw) are both vectors

: and equation (4.1) is true whatever coordinate system we choose to represent them in.

" The coordinate system based on the lines of curvature is a natural choice. We define

coordinates (u1, u2) = (u, v) and calculate the Christoffel symbols (Millman and Parker 1977,

Hawking and Ellis 1973).

Ots" 02x
a= i O Pv ' =ivpp 1,2. (5.3)

It should be emphasized that the space we are considering is the flat two dimensional

(X, Y) plane rather than the surface described by (2.1). This is because zero crossings are

found in the image plane..-

Denote the differential operator by V,. In this coordinate system we find (1w) to be

Vuf= - T/ ( f . ' fA )"  (5.4) % 3

The second derivatives of f are

v.vpf= -- (v,4) - r,,(V,I). (5.5)

Setting v = = I and using (5.3) we obtain

d2f 0' 02Z, of,FIaU oxi (O o=,o5.6) "
du2 aikou) - 58

Using (3.13) we can simplify this as

d~~~-° 02 2.tZ

dt 
_ 0Oz Oj "(5.7)

;jji - ari0x i u u

Similarly we find

d2 f 01f oxr-, Ox

dv2 r i= r 7 -77j;3 (5.8)

and

13
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dudv Ozicz, Ou at(

Now using (3.15) we find

=o. (5.10)
dudv

This result is very important since it enables us to generalize Grimson's one dimensional

theorem (Grimson 1981). We write the derivative of E in the t direction as

dE OR dl,. OR dl,
du l=du Of,,du (5.11

Using (5.10) this becomes

dE aR dl.(
du af,. du(

Then Rolle's Theorem tells us there is a zero of d2 E/du2, or equivalently a directional

zero crossing, in between points where dE/du = 0.

We would like a result that is independent of the reflectance map R and, following

Grimson, we assume that OR/Of, varies slowly compared with df,/du. This assumption is

valid for many forms of the reflectance map (Grimson 1981). Then zeros of dE/du are likely

to be zeros of df,/du. Using (5.7) and (4.4) we see that these occur at

,=0 -. (5.13)

We have proved the Line of Curvature Theorem which states that there will be a

directional zero crossing along a line of curvature between points where the principal

curvature of that line vanishes. These are the only zero crossings along such lines.

Furthermore since the zero crossing occurs at an extremum of dl,'/du it is likely to be near

an extremum of df,,/dti. So it is likely to be near an extremum of the curvature r.,. The

more uniform the Reflectance function is the better these assumptions will be. Calculations

suggest that these assumptions are most accurate when the gradient of the surface at the

extremum of curvature is small. This will be investigated experimentally. Examples of this

Theorem are shown in figure (1).

It remains to show that these zero crossings are physical. To do this we can use the

results of section (4) to argue that zero crossings along the lines of curvature are likely to

14
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be along the direction of the irradiance gradient. Alternatively we can see whether the lines

of curvature satisfy the requirement (2.3). For lines of curvature we calculate

1( .a aE

Near extrema of the curvature we expect this to be small since OE/O;x is likely to be

in the direction az,/au and the unit length of the tangent vector implies

4 -2  3 0. (5.15)

6. Extrema of the Irradiance

In a recent paper Koenderink and van Doom (1980) proved that the extrema of

illumination of an object lie on the parabolic lines (the lines on which the Gaussian curvature

vanishes) and moreover that the isophotes (the lines of constant illumination) cut the

parabolic lines at angles which are independent of the position of the source. Using the

notation developed in the previous sections we are able to prove stronger results.

We first show that the extrema of illumination almost always lie on the parabolic lines

(we demonstrate an exception in Appendix 1) and show how their exact position depends

on the reflectance function. Secondly we show that the isophotes lie along the lines of

curvature at parabolic lines and hence that angles at which they cut the parabolic lines is
a property only of the geometry of the surface and the viewing position and is independent

of of the reflectance function and the position of the light source. Finally we argue that

these parabolic lines typically correspond to ridges, or valleys, in the image intensity and so

it might be possible to compute them directly from the image.

The parabolic lines of a surface are those for which the Gaussian curvature vanishes.

Hence they divide the surface into regions of positive and negative Gaussian curvature.

Their apparent importance for shape description led the mathematician F. Klein to use them

in his attempt to show that the artistic beauty of a face was based on mathematical relations

(Hilbert and Cohn-Vossen, 1952).

From (3.8) we see that a necessary and sufficent condition for a line to be parabolic

is that at least one of the principal curvatures must vanish on it, for example ., = 0.

The extrema of irradiance occur when

0 o. (6.) 
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From equations (5.12), (5.7) and (3.16), removing terms which are positive definite, we

see that (6.1) is equivalent to

OR aR
_7U i= o. (6.2)

1,, .  
1

Hence umbilic points with zero Gaussian curvature (r., -it..= 0), called locally flat

points, will give rise to extrema of the irradiance. These points lie on parabolic lines. The

most typical extrema are those where c, = 0 and ; 0 (and the same with u and v

reversed). These lie on parabolic lines but their exact position will depend on O and hence

on the reflectance function and the positions of the viewer and the source. A final, but

unlikely, possibility is when = 0. This will rarely, if ever, occur on a parabolic

line.

Note that extrema of the irradiance do not necessarily correspond to extrema of the

surface. These occur at

0 = 0, (8.3)

and from (4.1) we see that E will have the same value at all these points

E = R(o). (6.4)

Whether this corresponds to an extrema of the irradiance or not depends on the explicit

reflectance map. For a Lambertian surface

+ Mi'

R(A,) = I + f~q1  (6.5)
(1+ qq 1) (1 +

where the vector q, corresponds to the direction of the source.

11(o) 1 (66)
(I + q,qJ

and

R(61) 1+ (6f)qi(I + ,q, + 0(o'). (6.7)

Near an extremum of r (6fr)q, can take any sign and so 11(o) is not an extremum.
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Now suppose the reflectance map depends only on the angle between the surface
normal and the observer, perhaps corresponding to a uniform distribution of sources. Then,

for some number n,

R(If) (I + 1jfj)" (6.8)

which will clearly be extremized at 1. 0.

We now consider the second result of Koenderink and van Doom (1980). The isophotes
are the lines of constant illumination and are similar to the contours on a relief map. At any

point their direction is given by the vector I such that

I. YE =0 (6.9)

Suppose we are on a parabolic line given by i,, = 0. Using (6.2) and (6.1) it follows
that the gradient of the illumination in the direction of the line of curvature parameterized

by u is zero, VE = 0, on the parabolic line. Hence on parabolic lines the isophotes point

along the lines of curvature. As a corollary of this result we deduce that the angles at
which the parabolic lines cut the isophotes is independent of the reflectance function and

the position of the source.

We now argue that the parabolic lines generally correspond to ridges or valleys of the
image illumination. Again we consider a parabolic line with r,, = 0. As shown above this

corresponds to V,,E = 0. Now consider the values of VE on either side of this line. Since
the line is parabolic with ,., =z 0 it follows that re. will have different signs on either side of

the line, without loss of generality ic., will be positive on the left side of the line and negative

on the right hand side. Frorr (5.12), (5.7) and (3.16) we see that the sign of V,,E on the left
and right hand sides of the line will be respectively minus or plus the sign of ,P. In the

generic case Off will be non-zero on the parabolic line and so will have the same sign on
either side of the line, for example it could be positive on both sides. Moreover it is likely

that this sign will stay the same as we travel along the curve. Provided these assumptions

are valid VE will be negative on the left side of the line, zero on the line and positive on
the right side. Thus, provided the lines of curvature are not too badly behaved, the second

derivative of the intensity in the direction of the line of curvature taken at the intersection

with the parabolic line will have the same sign along the curve and so the the curve will

correspond to a ridge or valley in the image intensity.

7. Conclusion

We have argued that many significant zero crossings lie on the principal lines of

curvature near the extrema of curvature. This suggests that it may be a lot easier to

17
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compute some lines of curvature than is commonly believed and that curvature patches

are a natural representation for surfaces. Furthermore if the zero crossings pick out the

extrema of the principal curvatures it might be possible to make a rough reconstruction of

the surface from them.

These results also suggest that part boundaries defined near extrema of the curvature

occur near lines of zero crossings. Thus it may be possible to read the part boundaries "."

proposed by Hoffman (1983) and Hoffman and Richards (1984) directly from the shading of

an image.

The extensions of Koenderink and van Doorn's results (1980) rederived in section 6

is also interesting as it suggests that the parabolic lines of the surface can be obtained
directly from the image. It is suprising that extrema almost always lie on parabolic lines,

that these lines are often ridges, or valleys, in the image intensity and that the isophotes

point along the directions of curvature when they cut the parabolic lines.

In conclusion it seems that information about the background geometry, and in

particular about the lines of curvature and the parabolic lines, can be obtained from the

image without too many assumptions about the reflectance function. A coordinate system

based on lines of curvature seems a good way to represent a surface.
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Appendix 1.

We first give a short proof showing that the extrema of the image irradiance usually

occur on parabolic lines. Then we consider a sphere with a lambertian reflectance function

to demotistrate an exception.

We write the image irradiance equation (4.1) in terms of cartesian coordinates

(if Of

We differentiate twice by parts, using p,, and py , to obtain

OE OR a7f al 02/
+. -° (A I 2. . .

and

?021 OR 02f

1 == _- ,+ (A.1.3)
0Y~ djy Oy 2  dp, dXdy,
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In cartesian coordinates the second fundamental form can be written

Do=[-- ] (A.i.4)

where 9=( + +( )2)I.

An extremum of the image irradiance occurs when

aR OE

--- O- 0 (A.I.5)

From equations (A.1.2), (A.1.3) and (A.1.4) it follows that either

aR an?
- = r - =0, (A.1.6)

or

deLD 0. (A.1.7)

If (A.1.7) holds then, by definition, the Gaussian curvature vanishes and so the extremum

lies on a parabolic line. This will be the typical situation. However it is also possible that . -

(A.1.6) holds and the extremum lies off the parabolic lines. As an example consider a sphere

with a Lambertian reflectance function. The sphere ha3 constant Gaussian curvature and

hence no parabolic lines. It must, however, have an extremum of illumination which must
therefore correspond to (A.1.7). It is straightforward to check this by an explicit calculation.

Appendix 2.

We illustrate the mathematics of section (2) with the following example.

Consider a coordinate frame (XI, Y,) rotated by an angle 0 relative to a frame (X, Y).

The unit vector in the X, direction is I where

(co.10,Ai,,0) (t.2. 1)

We denote the gradient derivative operator by V where

M_ (a (A.2.2)

Now the transformations between frames is given by

... °=. ",.............................................................



r...

YUILLE

X= XcosO + YsinO, (A.2.3)

Y= YcoaO - XsinO, (A.2.4)

and

X = XjcosO - YjainO, (A.2.5)

Y = Y cosO + . sinO, (A.2.6)

We have

Y = . = aAo a + inO- , (A.2.7)

Now a directional zero-crossing of E in the X is a solution of

0, (A.2.B)
aX~ 2

or equivalently

(U. _( ._V = 0. (A.2.9)

We use (A.2.7) to expand this as

021a a C R 9E
= (COa + sinO )(COSO ax + ino--). (A.2.1o)

We allow 0 to be a function of X and Y, 0 = 0(X, Y), so the rotation is no longer rigid.

Now !(.\, Y) will be a vector field whose direction depends on its position in space. We can

use (A.2.10) to write 12-1 as the sum of two terms.

(92 (coS 2Oxx + 2ain0coa0Il'Xy + sin2 I "yy) - Ex(sinOcoaOOx

OX = +Ain 200Y) + EY(Co. 20Ox + ainOCoOOy)" (A.2.II)

The second term on the right hand side of (A.2.11) occurs because is a function of
(X, Y). In the notation of (2.1) the first term corresponds to IMle(VV,)II and the second

.2 ," '"" '°'" . ,-° 
- ° , - ' ' ° . . ' ' ' l ' ° " ' - ' '' '' ""= '' ° '' ''' °°" ' e " " • " • • , " "
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to lA(Vlj)V7,E.In section (2) we argue that unless this term is small a solution of (A.2.8)

will be an artifact of the vector field _(X, Y) rather than a physical zero-crossing. We show

in equation (2.7) that the second term always vanishes when L is choosen to be along the

direction of the gradient of the image intensity.
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